Lemma 1.21

Yanan Zhang

Lemma 1.21. If x > 0, then $x^{-1} > 0$

Proof. Proof by contradiction. Case 1: Let x > 0 and suppose $x^{-1} < 0$. Then $x \cdot x^{-1} < x \cdot 0$ by axiom 1.16. Since $x \cdot x^{-1} = 1$ by axiom 1.11 and $x \cdot 0 = 0$ by axiom 1.17, then 1 < 0. which is a contradiction. Case 2: Let x > 0 and suppose $x^{-1} = 0$. By Lemma 1.11, $x^{-1} \in \mathbb{R}$ and $x \cdot x^{-1} = 1$. If $x^{-1} = 0$, then $x \cdot x^{-1} = x \cdot 0 = 0$ by Lemma 1.17. That is, 1 = 0. which is a contradiction. Thus $x^{-1} \neq 0$. Therefore, if x > 0, then $x^{-1} > 0$.